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FOREWORD
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ABSTRACT

A literature survey was made of the experimental values of the specific
heat of graphite. Most of the measurements from 20°K to 3800°K were re-
analyzed and a new average curve is given for each experimental run. Seme
of the new curves are significantly different from the original curves. Esti-
mates are given of the Cp-C,, term, the electrcnic specific heat, and the
specific heat of the lattice vibrations. The lattice specific heat was approxi-
mated by various combinations of Einstein and one- and two-dimensional
Decbye functions. The characteristic temperatures were selected by a least-
squares curve-fitting procedure,

This report has been reviewed and is approved.
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1. INTRODUCTION

This report gives the results of a literature survey of the experimental
values of the specific heat of graphite and the results of attempts to approxi-
mate the lattice specific heat by relatively simple analytic functions. The
survey covers most of the experimental values of the specific heat at constant
pressure C, from 20 to 3800°K. The lattice specific heat Cy is estimated
by subtracting from the average experimental values of Cp an estimate of the
thermodynamic formula for (Cp - Cy) and an estimate of the specific heat of
the electrons C,. The lattice specific heat was approximated by various
combinations cf Einstein and one- and two-dimensional Debye functions. The
Debye or characteristic temperatures were selected by a least-squares
curve-fitting program on an electronic computer.

Several of the existing literature surveys("’) of thermal properties in-
clude the specific heat of graphite. The present study differs from these in
two important respects. First, the original experimental data have been
reanalyzed, whenever possible, and an average specific heat curve obtained
for each sample measured. Sccond, these average specific heat curves for
individual samples are presented in tabular and graphical forms which permit
an evaluation of the experimental uncertainty in the average specific heat for
all samples and which show to what extent the specific heat differs for different
types of graphite. The original experimental data were reanalyzed for several
reasons, the simplest being to provide a check against numerical errors in
data reduction, Much of the early literature gave the mean specific heat over
large temperature intervals. In these cases the true specific heat at each
temperature has vzen calculated from the original enthalpy measurements.
Some of the recent literatuze report specific heat curves with sharp bends or
with sections which decrease with increasing temperature. Such behavior
seems unlikely and appears to the present author to be due to the manner by
which the specific heat was obtained from the enthalpy measurements. The
total specific heat function is the sum of six complicated analytic functions
representing the contributions of the six branches of the frequency distri-
bution in k space. It appears to be impossible to accurately represent the
specific heat function over a several hundred degree temperature interval
by only 2 or 3 terms of a power series expansion in the temperaturc, On the
other hand, when more terras are used and the coefficients are determined by
a least-squares curve fitting to the experimental enthalpy data, then in practice
the resulting curve tends to follow small drifts in the data which result in the
erroncous features of the specific heat curve mentioned above. Consequently,
it appears that ''beat by eye' curve fitting yields all the accuracy which can be
obtained in rost cases, and this method has been used exclusively in this work.

For many purposes it is sufficient to have the empirical specific heat
curve in tabular form. However, for certain theoretical studies and for some
computer numerical computations it is morc convenient to represent t?c
empirical specific heat curve by an analytic function, In 1923 Magnus 9) used

Manuscript released by the author June 1963 for publication as an ASD
Technical Documentary Report.




a sum of two three-dimensional Debye functions with Debye temperatures of
760 and 2280°K to approximate the specific heat curve, The analytical and
empirical curves crossed at several temperatures but between these tempera-
tures the difference was usually much larger than the experimental uncertainty
in the empirical curve. Later it was recognized that, because of the weak
binding between layers, graphite should resemble a two-dimensional crystal
and its specific heat might be better approximated by two-dimensional Debye
functions, for which the specific heat is proportional to T? at low temperatures.
Still later Krumhansl and Brooks {1¢) pointed out that, as the temperature ap-
proaches the absolute zero, the T? variation must change to a T% variation.
The trend of the specific heat curve in this transition region is now satisfactorily
understood from the results of a number of theoretical calculations {31! but the
actual formulas are rather complicated. Since the objective of the present
work is to get tractable formulas to approximate the specific heat at higher
temperatures where the magnitude of the specific heat is large, no attempt has
been made to fit the specific heat curve below 20°K, The frequency distri-
butions of the accustical modes have been approximated by the triangular two-
dimensional Debye distributions, those of the optical modes by peaked
Einstein distributions or by rectangular distributions constructed from one-
dimensional Debye distributions. In a few cases the optical modes were
omitted or, more exactly, were assumed to have the same Irequen)cy distri-
bution as the acoustical modes. It should be noted that Tarasov (%) has ap-
proximated the specific heat in the low temperature transition region by a
combination o1 two- 2nd three-dimensional Debye functions, Although it gives
a T%= T3 transition, it is otherwise inadequate in that it fails to take into ac-
count the differences between the various acoustical and optical modes.




Z., LITERATURE SURVEY

2.1. Maethod of Evaluation

The following procedures were used in reanalyzing the original clata re-
ported on measurements of the specific heat. If the enthalpy (total heat content)
was measured by, say, dropping a hot sample into a cold calorimeter, then
the experimental enthalpv points were plotted against the temperaturc on
large graph paper. A 'best by eye' smooth curve was drawn tiirough these
points, The specific heat at constant pressure was obtained from the slopes
of tangents to the enthalpy curve at a standard set of temperatures. Since
there is always some error in determining the slopes of tangents to a graphi-
cal curve, these C, values were plotted against the tamperature and a ""best
by eye" smooth curve drawn through them, This smooth curve was taken as
the average specific heat of the sample, and the reported tabular values are
the coordinates of this curve. In some cases it was felt that the scatter in the
enthalpy points at the higher temperatures made it impossible to adequately
determine a smooth curve. Such regions were omitted and results are given
here for a smaller temperature interval than in the original report.

If the specific heat was measured by, say, adding a small amount of heat
to a sample at temperature, then the experimental Cp points were plotted
against the temperature. A "best by eye" smooth curve was drawn through
these points, and the coordmates of this curve at the standard set of tempera-
tures are given in the tables. Differences between the smooth curve reported
here and the smooth curve reported in the original article must be ascribed
to differences in taste as to how to fit the curve. The present author does not
claim that his curve is more accurate than that of the original experimentalist,
but the differences form some indication of the uncertainty in the coordinates
of the smooth curve.

At certain temperatures, the choice of which depended on the nature of
the experimental curve, a rough estimate of the error ACp has been made.
This estimate is ncver less than the originally reported error and is greater
than the rcported error whenever the scatter in the experimental points was
so large that the average specific heat curve could not be determined within
the original reported error. Although the quantity AC, was not calculated
from a precise statistical formula, it is intended that ~ it represents limits
such that there is about a 50 per cent probability that the true value lies within
the range tAC The temperatures at which the error was estimated were
chosen so tl"x)at ACP should vary monotonically betwesan these temperatures,

2,2. Summary of Experimental Measurements of the Specific Heat at Constant
Pressure

In the following, individual samples are designated by two sets of symbols,
such as CeNG-D55. The first set (CeNG) identifies the type of graphite
(Ceylon natura) graphite) and the second set {D55) identifies the author and
year of publication (De Sorbo, 1955). The explanation of these symbols and
the key to the literature references are given in Table 1.




Table 1. Explanation of Sample Designation

First Reference

Symbol Type of Graphite Author No.
CeNG - D55 Ceylon natural graphite De Sorbo 13
CS - D53 National Carbon Co, grade CS " 14
Reac - B54 A.E.R.E, reactor graphite Bergenlid 15
AGOT - E45 National Carbon Co. grade AGOT Estermann 16

(Data represent an average
of 7 unirradiated samples)

Fab - J34 National Carbon Co. fabricated Jacobs 17
Fab - N11 Fabricated graphite Nernst 18
Fab - K11 Fabricated graphite Koref 19
CeNG - M23 Ceylon natural graphite Magnus 9
Unk - W75 Unknown Weber 20
CeRt - S24  Ceylon natural and "retort" graphite Schldpfer 21
7087 - L56 Speer Carbon Co. grade 7087 Lucks 22
GBH - L56 Nutional Carbon Co. grade GBH " 22
ATJ - N60 National Cartan Co. grade ATJ Neel 23
ATJ - F60 National Carbon Co. grade ATJ Fieldhouse 24
GBE - F56 National! Carbon Co. grade GBE " 25
3474 - F56 Speer Carbon Company grade 3474 " 25
CaFi - W17  Carbon lamp filament Worthing 26
GEH - R57 National Carbon Co. grade GBH Rasor 27
GBE - R57 National Carbon Co. grade GBE " 27
3474 - R57 Speer Carbon Co. grade 3474 " 27
7087 - R57 Speer Carbon Co. grade 7087 " 27

v
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Table 2 gives the results of the reanalysis of the experimental measure-
ments of the specific heat at constant pressure. For brevity the estimated
error AC, is given as a per cent of Cpp. In two cases, only a few measure-
ments wezPe made and a smooth curve could not be determined. In these cases
the measuremants at temperature are repsorted. It is impossible to adequately
present all the data of Table 2 in a single small grapn. Figures 1 and 2 show
a:)lotl':e measurements in the temperature ranges 200 tn 46G6°K and 1000 to
2000°K.

The extent to which the specific heat is different for different types of
graphite cannot Le satisfactorily determined from the present data, It is
knowr?#) that below 20°K the specific heat of natural single-crystal graphite
is slightly less and that of lampblack-based and turbostratic pyrolytic graphite
is slight}y greater than that of a good quality coke-based graphite. DeSa-ho's
resuits, ! 3} shown in part in Figure 1, indicate that the specific heat of Ceylon
natural graphite is as much as 9 per cent less than that of artificial graphite in
the temperature interval 120 to 300°K, This difference is over twice as large
as the combined erperimental errors of the two curves. Above 300°K the
measurements on natural and fabricated graphite do not seem to be signifi-
cantly different. Also, the difference between the specific heat of different
grades of graphite seems to be about the sarne as the difference between various
measurements of the same grade of graphite, This may be seen, for example,
by comparing the results for grades ATJ and GBH (grade GBH should have
identically the same thermal properties as grade ATJ) with the results for other
grades, It appears that within the accuracy of the present measurements the
specific heat of all coke-based artificial graphites is the same at &!l tempera-
tures above a few degrees absolute,

Table 3 gives the average specific heat at constaul pressure for all coke-
based graphites. Below 300°K this curve is based on the individual measure-
ments of only coke-based graphites. Above 300°K it is based on the data for
all graphites. The average curve is shown as a dotted line in Figures 1 and 2
and represents a "'best by eye' {it of the individual measurements on graphs
covering the entirec tecmperature range with proper consideration given to she
probable errors of the individual curves. The quantity AC given in Table 3 is
an estimated error such that most of the reliable individual measurements fall
within the range Cp, + 4C, The subscript '"p" is omitted since AC is also the
probable crror of {hc specific heat at constant volurne and of the lattice specific
heat.

Table 3 also gives the estimated values of the lattice specific heat Cy, of
the difference (C,-C,) between the specific heats at constant pressure and at
constant volume,of the specific heat C, of the electrons, and of the contribution
Cy of a thermally activated process, possibly the creation of vacancies, which
occurs at very high temperaturcs. These quantities are important for the
theoretical interpretation of the specific heat of graphite and are discusscd
further in the following sections,

2.3. Difference {Cp-C,) of the Specific Heats

The difference between the specific heat at constant pressure and the
specific heat at constant volume is given by the well-known thermodynamic
formula

5




Table 2. Specific Heat at Constant Pressure
for Various Types of Graphite
{Part 1)

T CeNG - D55 CS - D53 Reac - B54 AGOT - E45 Fab- 334
K Cp, Aacy C, acy Cp acC Cp ac, C, ac,
20 0.0174 5 0.0198 3 0.0178 2 0.0187 3

25 0.0261 0.0301 0.0289 0.0298

30 0.0406 0.0441 2 0.9422 0.045

35 0.0575 4 0. 0609 0.0590 0.063

40 0.0765 0.0795 0.0786 0,082

45 0. 0965 0.0987 0.1003 0.103

50 0.119 0.118 0.123 0.127

55 0.143 0.141 0.147 0.153

60 0.168 0.165 0.173 0.179

65 0.195 2 0.191 0.198 0,206

70 0.223 0.219 0.225 0.234

15 0,252 0.249 0.252 0.262

80 0.280 0.279 0.280 0.291

85 0.309 0.309 0. 300 0,321

90 9.339 0. 341 0.338 1 0.351 0.333 1
95 0. 369 0.373 0.381 0.363
100 0.400 1.5 0.405 1 0.412 0,395
110 0.462 0.472 0.475 3 0,463
120 0.525 0.541 0.535
130 0.592 0.613 0. 609
140 0.659 c.692 0,686
150 0.729 15 0,766
160 0.799 0.85)7 0.849
170 0.871 1 0.943 0,934
180 0. 945 1.028 1,019
190 1.021 1112 1,106
200 1.097 1.197 0.7 1.193
210 1.173 1.282 1.279
220 1,251 1,367 1.368
230 1.329 1,453 1.45%
240 1.409 1.539 1,545
250 1.488 4 1.625 1.635
260 1.567 1,712 1,725
270 1.646 1.800 1.815
280 1.725 1,887 1.903
290 1.804 1.973 1.990
300 1,883 2 2,060 1 2,015 1
Units: (2p - cal/mole *K; ACp - per cent of CP




Table 2. Specific Heat at Constant Pressure

for Various Types of Graphite

(Part <)
T Fab-N11 Fab -Kl11
*
K Cp Acp Cp Acp
82.5 0, 2¢
817.5 0.32
137.9 0.676
231.4 1.484
235.3 1.506

Units: Cp - cal/mole °K; ACp - per cent of Cp

(Part 3)

T CeNG - M23 Unk - W75 CeRt ~S24

K Cp ACp Cp ACE Cp Acp
300 1.83 10 2.11 2 2.09 5
350 2.40 2.56 2.53

400 2.91 5 2.98 2. N 1
450 3.28 3.36 3,27

500 3.58 2 3.69 3.58

550 3.82 3.98 3.85

600 4.03 1 4.21 3 4,08

650 4,23 4.28

700 4.41 4.58 ? 4.46

750 4.58 4.59

800 4.74 4.82 3 4.7

850 4,88 4.89 4.81

900 5.00 4.95 4.89

950 5.09 5.01 4,97
1000 5,17 5.06 5.04
1050 5.24 1 5.10 5.11
1100 5. 30 5.14 5.17
1150 5.34 5.18 5.23
1200 5.37 2 5.22 5.29
1250 5.2% 5.35
1300 5.28 5.40
1350 5.31 5.45
1400 5.34 2 5,50 1

Unita: Cp-callmole °K; Acp-per cent of (3p
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Table 2. Specific Heat at Constant Pressure
for Varicus Types of Graphite

{Part 5)
T GBH -R57 GBE - R57 3474 -R57 7087 -R57
K Cp ACp Cp ACp Cp ACp Cp ACp
1400 5.37 10 5,56 10
1500 5.78 5 5.45 5.53 8 5.70
1600 5.89 5.52 5.66 5,82
1700 5.98 5.58 5.76 5 5.93
1800 6.06 5.64 5 5.83 6.03 5
1900 6.13 5,70 5.89 6.12
2000 6.19 5.75 5.94 6.21
2200 6.28 5.84 6,01 6.34
2400 6.35 5.92 6.05 6.44
2600 6.41 5.99 6.10 6.53
2800 6.46 6.05 6.15 6.60
3000 6,51 6.12 6.22 6.66
3200 6.58 6. 21 6.32 6.72
3400 6,71 6.35 6.49 6.81
3500 6.86 6.50 6.63 6.92
3600 7.22 5 6.78 5 6.83 5 7.10 5
3700 7.86 7.31 7.18 7.44
3800 8.86 8.43 10 7.80 8.06
3900 11.7 10 9.2 10 9.9 10
Units: Cp - cal/mole *°K; ACp - per cent of Cp
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- = 2 .
C,-C,=VE*BT, (1;

where V is the molar volume, 8 is the volume coefficient of thermal
expansion, and B is the bulk modulus. For a porous material zuch as graphite
V, 8, and B must be evaluated for the crystals and not for the bulk, porous
material. All quantities must be evaluated at the temperature T.

2.3.1. Volume Coefficient of Thermal Expansion and Molar Volume

Let aj, a;, a; be the lattice constants of the unit cell of any crystal.
The linear coefficient of thermal expansion is defined by

da:
o = ?‘_ d“,‘r‘ ) ) (2)
1 / P
Integration gives
T
ai('l‘)=a.i (T,) exp [ Soi dT ] . 3)
To

The volume of the unit cell is
V= %k a az ay ., (4)

where k i8 a numerical constant. It follows from (3)and (4) that
T
V(T)=V(To)0xP[S(°x *o, +0y)dT] . (5)

Te

The volume coefficient of thermal expansion is defined by

1 dv
B D e m— . (6)
v dT p

On differentiating {5) and substituting into (6) one obtains

B saytuztay . (7
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This result is rigorously correct. The often made claim that it holds only in
the approximation of neglecting certain higher-order terms is an erroneous
conclusicn based on starting with the formula

a, (T)=a,(Ty) [1+a;(T-To)] , (8)

which is itself only an approximation to the correct formula (3).

If ¢ denotes the interlayer distance in the graphite lattice in Angstrom
units (¢ ~ 3.36 A) and a denotes the length of the graphite unit cell in the
basal plane in Angstrom units ( a ~ 2,45 A.), then the density of the crystal
is given by

d = (46.0536/a%c) g/cm? {9)

and the crystallite molar volume on the physical scale of atomic weights is
given by

V = (0.260884 a%c) cm?/mole . (10)

A brief literature survey has been made of the X-ray valucs of the lattice
constants of differsnt types of graphite as a function of temperature. The
linear coefficients of thermal expansion were obtained from the slopes of the
curves of lattice spacing versus temperature. The c-axis spacing and the
coefficient of thermal expansion are definitely different for significantly
different types of graphite, such as natural single-crystal, coke-based, and
lampblack-based graphites. The a-axis spacing and coefficient of thermal
expansion appear to be the sar)ne for different types of graphite, From a
study of several sources (9-33) 3verage curves of lattice spacings and linear
coefficients of thermal expansion have been constructed for natural single-
crystal and annealed pyrolytic graphite and for a good quality coke-based
graphite with a room temperature c-spacing of 3.360 A. The values, given
in Table 4, have been made sel{-consistent in the sense that a lattice spacing
and its coefficient of thermal expansion satisfy equation (3). The coefficient
of thermal expansion curves are typical of a class of graphites and the values
for individual samples may differ by, say, 10 per cent above 100°K and by a
factor of two below 100°K. The data above 2800°K were obtained by a linear
extrapolation of the coefficient of thermal expansion curves,

The volume coefficient of thermal expansion of graphite can be calculated
from the data of Table 4 and equation (7) with the condition that o) = a;, and
the molar volume is obtained from equation (10).

2.3.2, Bulk Modulus

The bulk modulus has been measured at room temperature but, so
far as the author knows, has not been measured at higher temperatures. An

14




Table 4.

Lattice Spacings and Crystallite
Coefficients of Thermal Expansion
of Natural and Coke-Based Graphites

Natural and Coke- Natural and Coke-Based
Based Graphite Pyrolytic Graphite Graphite
T a < Qa3 c Qs
0 2.4619 0.00 3.3368 0.0 3.3417 0.0
20 2.4619 - 0,01 3.3368 0.3 3.3417 0.6
40 2,4619 -0.08 3,3369 5.3 3.3419 6.1
60 2,4619 -0.15 3.3375 12.8 3.3423 14,2
80 2.4619 -0.3 3.3385 16,7 3.3437 17.5
100 2.4618 - 0.4 3.3397 18,7 3.3449 19,3
120 2.4618 -0.6 3.3410 20,1 3.3463 20,7
150 2.4617 -0.9 3.3431 21,6 3.3485 22,2
200 2,4616 -1.3 3.3467 23.4 3.3523 24.4
250 2.4614 -1.5 3.3507 24.8 3.3566 26,0
300 2.4613 -1.5 3.3550 25.9 3.3610 26,9
350 2,4611 -1.3 3,3594  26.8 3.3656 27.3
400 2,4609 -1.1 3.3640 27.3 3.3702 27.6
450 2.45608 -0.9 3.3686 27.6 3.37149 27.8
500 2,4607 -0.6 3.3732 27.8 3.3796 27.9
600 2.4606 -0,2 3,3827 28,0 3.3890 28,0
700 2,606 + 6. 3.3922 28.2 3.3989 28,2
800 2,4607 c.4 3.4018  28.4 3.408z  28.4
900 2,4608 0.6 3.4115 ?28.4 3.4179 28,6
1000 2.4609 0.8 3.4213  28.9 3.4277 28,9
1200 2.4614 1.1 3.4413  29.5 3.4478 29.5
1400 2.4620 1.3 3.4621 30,5 3.4684 30.1
1600 2.4627 1.4 3.4838 32,1 3.4895 30.6
1800 2.4634 1.5 3.5070 34,3 3.5111 31,0
2000 2.4641 1.5 3.5320 36.7 3.5331 31.5
2200 2,4649 1.5 3.5589 39.1 3,5556 31.9
2400 2.4656 1.5 3.5877 41.5 3.5785 32,2
2600 2,4663 1.5 3.6184  43.9 3.6017 32.6
2800 2.4671 1.5 3.6512  46.3 3.6254 32,9
3000 2,4678 1.5 3.6861 48.7 3.6495 33.3
3200 2.4686 1.5 3,7230 51,1 3.6740 33,7
3400 2,4693 1.5 3.7622  53.5 3,6990 4.0
3600 2,4700 1.5 3.8036 55.9 3, 7244 4.4
3800 2.4708 1.5 3.8473 58.3 3,7502 34.8
Units: T -°K; a, c-A; a;, ay - 107¢/°K




estimate of its temperature dependence can be made in the following way., The
bulk modulus of most materials varies approximately linearly with temperature
2xcept pear the absolute zero, where it is independent of temperature. Hence,
it is reasonable to set

3B (py, To)

B (poo T) = B{po, To) + 5T (T’To)b (11)

P

where p, and T, denote atmospheric pressure and room temperature. The
temperature derivative can be estimated by a method suggested to me by
Charles S. Smith. If we consider that

B=B(T,V) ,

then
v T

and B\ _ 9B B 3 v
'a’r> = "5’1*) * 1;) -5Lv> T . (12)
P \ T T P
Using the definition of the buik modulus,

)
Bz.v P . (13)
W>
T

and the definition (6) of the volume coefficient of thermal expansion, one can
write (12) in the form

P
P v T

It has been found that in several materials the first term on the right-hand side
is at least a factor of 10 smaller than the second term; and we will make the
approximation of setting (9B/8T)y, cqual to zero. The pressure derivative can
be calculated from the compressibility data.
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Bridgman (%) has measured the change in volume of a sample of Ceylon
graphite as a function of pressure. However, after cycling the sample to
25, 000 kg/cm? and back to atmospheric pressure the density was only 2,23
g/cm?, which corresponds to a porosity of 1. 64 per cent. Presumably this
porosity decreases as the pressure increases, thereby causing the measured
compreasibilig to be too large by,possibly, {0 per cent. Kabalkina and
Vereshchagin " have measured the change in c-spacing of both Ceylon and
fabricated graphite as a function of pressure. The scatter in their data is
large enough to mask any difference between the two types.

The compressibility and its pressure derivative can be related to the
change in c-spacing as follows. The linear and volume compressibilities are
defined by

1 da
x,"'a"d? {15)
T
_ 1 de
SRR e
T
1 av
X *-vap . (17)
T

Applying these f-.rmulas to equation (10), one obtains

x=2x, *x - (18)
The high pressure X-ray data can be represented by an equation of the form

(co - €)/cg =hy{p - po) +ta(p - Po)*s (19)

where h; and h; are constants and ¢, i8 the lattice spacing at atmospheric
pressure p,. Differentiation with respect to p yields

X (P)ghx’ 2h (p-po)

(20)
3 1-hy(p-po) - h; (p-po)?

At p = po
x’ (Po) = h[ ’ (Zl)

17




so h; is the linear c-axis compressibility at atmospheric pressure. Differenti-

ation of {20) with respect to the pressure and evaluation at p = pg yields

8)(J 2
—=—— ) =h,*2h; at p=p, . (22)
8p/_

T

From (18)
9

§£> =2 _5’1) v O . (23)
P P 3

T /T P T

The X-ray data indicate that X, is very small over a large change in pressure,
so we will make the approximation of setting (ax, /3p)y = 0 and of using (22)
to give the value of (3X/8p)y. Finally, the bulk modulus by definition is the
reciprocal of the compressigility.

B= l/X ’ (24)
from which it follows that
0 1 3
= e : (25)

/T T

The volume compressibility data can be represented by an equation of the
form

(Vo-V}/Vg = g1 (P-Po) * B2(P-Po)* (26)

where g, and g, are constants. An elementary but tedious analysis indicates
that porosity causes a significant change in g, and a negligible change in g,.
H(Vy-V)Volp-po)and(cp-c)/cy{p-po) are plotted versus {p-py), the
results should be straight lines with intercepts at p = p, of gy and h; and with
sloper of g, and h;, Bridgman's smoothed data give an extremely linear
curve out to 15, 00U kg/em? and a definite deviation from linearity at higher
pressures, The scatter in the original Russian data is too large to confirm
the linear variation. A derivation similar to that leading to equation {22)
yields

ax
FP_\ gt v 2, at P=Pg . (27

;T
18




It turns out that g§ and hf are about a factor of 10 smaller than 2g, and 2h,.

It follows from this and the approximate equzlity of the pressure derivatives
of X and X, that g, and h; are approximately equal and, hence, the slopes of

the curves mentioned above should be nearly the same.

Since Bridgman's data cover a much larger pressure range, his results
were used to determine g;; and we make the approximation that h; = g,. A
""best by eye'' line with slope h; was drawn through the Russian data and the
intercept at p = p, taken as the value of h). The results are

x3 =hy = {(2.70 0, l)xlO‘“ szld (28)
hy = -(32.71% 0,1)x10-% cm*/d? (29)
and
X,
-a—p— = -58.1 x 107% cm*/d? . (30
T

The compressibility x, can be roughly estimated from the elastic constants
to be

X, = -0.044 x 1071% cm?/d (31)

with possibly a large but unknown error. From (18) the volume compressi-
bility is found to be

x=(2.61 £0.1)x10-** cm?/d . (32)

From (24) and (25) the bulk modulus and its pressure derivative are calculated
to be

B=(3.83*01)x10"d/em? (33)
and
%;3 =8.5%0.6. (34)
T

From (11) and (14) one obtains
B=[3.83-0.00077 (T-300)]x 10" d/em? , (35)

in which T is in *K. Within the accuracy of the prescnt measurements these
results apply to both natural and fabricated graphate.
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2.3.3. Numerical Estimate of (CP-C,,)

The difference between the specific heats at constant pressure and at
constant volume can be calculated from equation (1) and the numerical data
given in the previous sections. Of the factors in VB?BT, only g depends
strongly on the type of graphite. The values of (C,-C,)) for fabricated graphite
are gwen in Table 3. For comparison a short set of values for natural graph-
ite is given in Table 5, Within a few hundred degrees of room temperature,
the values should be correct to within, say, 16 per cent but they may be in
error by a factor of about 2 at the higher temperatures due to a failure of
formula (11) to hold over such a large temperature interval, Below 1000°K,
the difference between the values for natural and fabricated graphite may not
be significant. At higher temperatures, the values for natural graphite are
definitely greater due to the higher thermal expansion of natural graphite.

Table 5. Average Values of (Cp-C,,)
for Natural Graphite

T (Cp-Cy) T (Cp-Cy)
0 0.0 600 0.021
50 0.00026 800 0.030
100 0.00161 1000 0.040
150 0.0029 1200 0.050
200 0.0043 1400 0.060
250 0.0058 1600 0.073
300 0.0076 2000 0.i0u
350 0.0098 2400 0.147
400 0.0120 3000 0. 205
450 0.0141 3400 0.237
500 0.017 3800 0.258

Units: T - °K; (Cp-Cy) - cal/mole *K

In several studies of the specific heat of graphite, the difference (C -Cv)
has been calculated from the formnla

CpCy = A Cg T, (36)
where A is supposcdly a constant which can be calculated from

A =Vp:B /sz (37)
using room temperature values, The constancy of A can be checked by evalu-

ating the right~hand side of (37) witkin a few hundred degrees of room tempera-
ture, where equation (35) for B should be reliable. The results are given in

20




Table 6 for fabricated graphite. The complete lack of constancy of A can be
traced to the fact that C, decreases to small values at much higher tempera-
tures than does B.

Table 6. Values of V2B /C 2 for
Fabricated Graphite

2 2 2 2

T Vp? B/C, T Vg B/CJ
50 411 300 6.4
100 106 400 3.6
156 35 500 2.6
200 16 600 2.1
250 9.4 700 1.8

Units: T - *K; V?*B/CJ - 107¢ mole/cal

2.4. Electronic Specific Heat

The specific heat of the conduction electrons can be calculated from the
electronic band structure of single-crystal graphite under the restriction that
the lattice constants or, more precisely, the band paramcters do not change
with temperature. Komatsu and Nagamiya 3*) have derived the basic formula
for the electronic specific heat. J. W. McClure has svpplied the author with
a slightly more accurate vuorsion of this formula. McClure further suggests
that at very high temperatures the electronic specifi. heat should approach
the values calculated for a purely two-dimensional structure, Therefore,
following McClure we take

Ce = 3R (1.32546) (kT/y,)? (0.5 + 0.096797 y,/kT
+0.501557 kT/y,) for T < 0.73394 y /k (38)

and

Ce = 3R (1.32546)(kT/y,)2 for T > 0.73394 Y, / k, (39)

in which R is the gas constant, k is Boltzmann's constant, and y, and y, are
the band parameters in the established notation, Actually, formula (38} is
valid for T < < y, /k and (39) is valid for T > > y, /k; but in the vicinity of T =
y, /k the two formulas give almost equal values and it is sufficiently accurate
to use cach to T = 0.73394 y, /k, at which tempcrature they give equal values,
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McClure suggests that the best values for the band parameters for
natural single-crystal graphite are

Yo = 2.8eV and y, = 0.27 eV, (40)

With these values (38) and (39) reduce to
Ce = (2.27T + 3.74 x 1073 T2 +1.20 x 107¢ T?)
x 1076 cal/mole °K for T< 2300°K (41)
and

Ce = 7.48 x 10°% T2 cal/mole *K for T > 2300°K, (42)

in which T is in °K., The values of the electronic specific heat, computed from
these formulas, are given in Table 3.

Frozn measurements of the specific heat below 2°K, van der Hoeven and
Keesom 2%} find that the coefficient of the linear term is 3.30 for Madagascar
single-crystal graphite and about 5 for fabricated graphites, It is beyond the
scope of this work to investigate the cause of the difference between the values
2.27 and 3,30, or to investigate the electronic specific heat of the lesz-perfectly
crystalline fabricated graphites at higher temperatures. For most temperatures
the values given in Table 3 are sufficiently accurate. Hcwever, at very high
temperatures an error of a factor of two in the electronic specific heat of
fabricated graphite world be of interest in connection with the possibility that

the lattice specific heat exceeds the Dulong and Fetit value in this range,

2.5. Specific Heat C; at Very High Temperatures

On measurinﬁ the specific heat of four grades of fabricated graphite Rasor
and McClelland'??) found that betweenr 3000*K and the sublimation temperature
at about 3920°K the specific heat doubled in value. Their data indicated a
thermally activated process with an activation energy of 7,7 & ,5 eV/atom,

By fitting their data they arrived at the following formula for the contribution
C; to the specific heat of this thermal process:

C¢ = 5.6 x 1007 T2 exp (-8.9 x 104/T) cal/mole *K, (43)

in which T is in °K, Values calculated from this equation are given in Table 3.
Although the constants in (43) may not be exactly right for the average C, curve
used in this report, the agreement is close enough to confirm the genera
correctness of the form of equation (43).

Rasor and McClelland cite evidence both from their specific heat and from
their thermal conductivity work that the mechanism of this process is the
therinal creation of vacancies. In particular they note that the activation energy
of 7.7 ¢V is close to the heat of sublimation 7.4 ¢V, which they take as approxi-
mately the energy of formation of a vacancy., However, recent electron
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micr?ssope studies of vacancy-controlled processes in graphite by Baker and
Kelly!3% indicate that the energy of formation of a vacancy is only about 3.3 eV;
so the interpretation of Rasor and McClelland's results in terms of vacancies
is not completely certain.

2.6 Lattice Specific Heat

The specific heat a¢ constant volume may be considered to be a function
of the temperature and the volume, At atmospheric pressure the volume of
the crystal is a unique function V(T) of the temperature, so one may write

c,=¢C, [T. V(D]

v

However, theoretical calculations are usually based on the concept of a rigid
lattice with lattice constants corresponding to some temperature Ty, which
might be room temperature or 0°K, Thus, C,, [ T, V(Ty)] is of greater theo-
retical interest, and it is convenient to define a quantity E (T) by

E(T) = Cv [Tt V(T)] - Cv[T, V(To)]. (44)

The specific heat of the lattice vibrations of a rigid lattice, denoted by
C¢[T,V(To)] is cven more fundamental and is given by

C [T V(To)] = C, [T, V(To)] + C [T, V(To)] + C,[T. V(TO)LS)

Combining equations (1), (44), and (45), we obtain for the lattice specific heat
Cy [TeVIT) =C [T, V(T)] - VB?BT - C_ [T, V(To)]
-C, [T, V(To) ) - E(T). (46)

Overton{*® has shown how E(T) may be calculated {rom experimentally mea-
sured quantities, ror sodium and copper, he found that E (T) wae smaller

than but not negligible compared to VB2BT. Since the data necessary to cal-
culate E(T) are not available for graphite, this term must be neglected here,

The values of C, [T, V(To)] calculated by (46) arc given in Table 3 for
fabricated graphite.” The results are not accurate cnough for the precise
valuc of Tq to matter. The lattice specific heat exceeds the Dulong and Petit
valuec of 5.96 cal/mole *K above about 2300°K. The experimental error AC
and the approximations made in calculating C, from C_ arec too large to draw
any conclusions concerning the existence of anharmonif forces in graphite,
The values of C, above 3000°K are not significant in that Rasor and McClelland
had to assume a set of values for Cy in this temperature range in order to
derive their formula for C,. The computed values of C, given in Table 3 indi-
cate the approximate validity of formula (43) for C¢. Etlforts to find analytic
formulas to represent C, [T, V(To)] are described in the following section,
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3. ANALYTICAL REPRESENTATION
OF THE LATTICE SPECIFIC HEAT

3.1. Form of the Frequency Distributions in Graphite

Ir attempting to find an analytic function to best fit an empirical curve
there are an endless number of functions which might be tried. To reduce the
work to a reasonable amount certain rather arbitrary decisions have to be made
at the beginning as to the types of functions to be considered. In making these
decisions it is helpful to consider the general nature of the frequency distribu-
tions of the lattice vibrations in graphite and to review the results of the more
rigorous Born-von Kirman type calculations.

There are 4 atoms in the unit cell of graphite, so there are 12 branches
of the distribution of lattice vibration frequencies in reciprocal or wave-vector
space. Because of lattice symmetry, the branches are degenerate across the
top and bottom faces of the Brillonin zone, and it is more convenient to con-
sider that there are 6 branches in a Brillouin zone which is twice as high.
These 6 branches may be classified into 3 low-frequency acoustical modes and
3 high-frequency optical modes. Because of the weak interaction between
layers, the directions of the atomic vibrations are mostly either parallel or
perpendicular to the iayer planes. This fact leads to a further classification
of both the acoustical and optical modes as: '"out-of-plane', "'in-plane trans-
verse' in which the vibrations are essentially in the layer plane and transverse
to the direction of propagation, and "in-plane longitudinal' in which the vibra-
tions are essentially in the layer planes and in the planc defined by the direction
of propagation and its projection on the layer plane (a longitudinal wave only
when the direction of propagation is in the layer plane).

The restoring forces for the "out-of-plare' modes are wn~aker than for
the "in-plane' modes and, correspondingly, the frequency distributions for the
"out-of-plane' modes occur at lower frequencies than do those of the "in-pl We"
modes. I. appears Ir? the Born-voP liarman type calculations of Newelilé!
Yoshimori and Kitano'4?? and Baldock'43) that the qualitative shape of the
frequency distributions N(v) is as shown in Figure 3,

3.2. Representation in Terms of Debye and Einstein Functions

From the shape of the distribution functions as given by Born-von Karman
calculations and because of the approximate T2 dependence of the specific heat
at moderately low temperatures, it appears to be reasonatle to represent the
acoustical modes by two-dimensional Debye distributions for which the specific
heat varies as T2 at low temperatures. The optical modes should be reason-
ably well represented by rectangular or, if the distribution is narrow, by
Einstein distributions. The rectangular distribution can be constructed from
the difference of two one-dimensional Debye distributions. Althcugh the specific
heat of a one~-dimensional Debye distribution varics as T at low temperatures,
the two lincar terms cancel in taking the difference of two functions, and the
remainder is proportional to exp (- @/ T) at low temperaturzs, as is appropri-
ate for optical modes. It should be noted that we ar~ using one- and two-
dimensional distributions only to approximate the true distributions and are not
considering the graphite crystal as being either onc or two dimensional,
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N{v) N{v}) N{v)
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N-4460

Figure 3. Qualitative Shape of the Frequency
Distributions for Graphite

3.2.1. General Lattice Specific Heat Function

Let Nj (v) be the frequency distribution of the jth branch (j=1,"", 6),
normalized such that

S Nj (v) dv = 1, Ny, {47)
0

where Ng is Avogadro's number, Also, let Dy (x) and D;(x) be one- and two-
dimensional Debye specific heat functions and E (x) be the Einstein specific
heat function, where

x = hv/kT, (48)

Mathematical formulas and series expansions for thesc functions are giver in
the following section.

For the present purposes we wish to consider three types of distributions
and their specific heat functions:
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Linear

Nj{v) = No v/vjz for 0< v < vj (491
=0 otherwige
Cy (T)=5 R D;(x) (50)
Rectangular
Nj (v) = Ng/2(1 -dj) vj for djt:j SV <y (51)
0 _S dj <
= 0 otherwise
c, (T) = [R/Z(l-dj)] [D,(xj)-dj Dy (djxj)] (52)
Einstein
N; (vy =1 N5 (v- Vi) 6 = Dirac delta function (53)
2
Cy (T = L RE(xj, (54)
2

A computer program was prepared to compute the total lattice specific
heat. Different types of functiona could be chosen for the 6 branches by
changing the input data, Fou a given choice of functions, the limiting frequen-
cies were varied to obtain the best {it of the experimental curve. With the
facilitics availabis, it was impractical to vary more than three frequencies
during the curve-fitting process, Therefore, the program was made to depend
on only three characteristic frequencies or, equivalently, on three character-
istic or Debye temperatures &); , @, and @3, where

®; = hvy/Kk, i=1,23. (55)
Thus, the specific heat of the jth branch depended on some @ ¢t (j)r Where
t(j) =1, 2, or 3. To allow flexibility the maximium frequency of"each branch

was taken to be some constant aj times one of the three vj, The computer
program computed the mogar lattice specific heat from the formulas

Cy(T) = R Z Fj (xj). (56)
j=1

where

xj = 3y ®t(j)” (57
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F; (xj) = fj D, (xj) for j = 1,2, and 3 {58)
Fj (xj) = [fjl( 1 -dj)] [DI("j) - d.i D, (dj xj)] + e E (xj)
for j = 4, 5, and 6 {59)
and either f, = Oor e, = 0 for j= 4, 5, and 6. The input data to the program
consisted of the {'s, %'s, d's, a's, t's, ®) 's, and a list of temperatures at
which the value of C, was desired. The input data also contained the corres-

ponding set of experimental values, which will now be denoted by Cy ®*P, from
Table 3; and the program computed the difference

Diff = C,(T) - C,P (T). (60)

The curve fitting was done by means of another program which computed
a weighted mean square error MSE from

MSE = o ) Wi [Cq (Ti)-Cy P (Ty |2, 1)

1

TN

where n is the number of temperatures used, wj is a weighting factor included
in the input data, and C,(T) io the value computed by equations (56) to (59).

The input also izcluded a set of increments A #); and the number of times
AB); is to be added to @i- The program computes MSE for the original @'s,
then increments one of the @ 's and recomputes MSE, ctc. The output gives
for each value of @3 a matrix array of MSE values with the rows indexed by
the values of ¢J; and tne columns indexed by the values of @z- The procedure
was to start with a coaise net of @ values and find the general positions of the
absolute and relative minima in the values of the mean square error, By re-
peating the calculations with smaller increments A @) the @ values giving the
minimum mean square erreor were found to the nearcs: 5 or 10 degrees, at
which point the process was stopped.

The weighting of the mean square error was done implicitly by the choice
of the temperatures used and explicitly by the choice of the weighting factors
w;, Ferhaps the most logical choice of the weighting factors is the reciprocal
ot) the square of the experimental erros AC,

wi = 1/[aC (Tp]E. (62)

However, below 300°K the experimental curve is known so accurately
that the weights given by (62) are overwhelmingly large; and in this region
smaller weights had to be assigned on the basis of how close a fit is desired
in this region. In order to reduce the computer time to a reasonable amount,
only 7 temperatures were used, Since the primary cbjective is to obtain a
reasonable fit over the entire temperature range, no effort was mad’? to obtain
an optimum fit in the T2 region below 100°K. The values of T, Cle p. and w;
used in the curve fitting are given in Table 7,
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Table 7. Values of T, clexp . and wj
Used for Curve Fitting

e
100 0.400 2500
200 1,196 2588
300 2,061 2500
500 3,62 277
700 4,42 83
1000 5,01 69
1400 5.46 44

Units: T - *K; Cf"p - cal/mole °K;
wi - mole? *K?/cal?

3.2,2, Formulas and Series Expansions for Debye and Einstein Functions

The Einstein specific heat function E {x) is defined by
E(x) = x? ¥/ (e*-1)2%, (63)

For x > 0.3 the functicn E (x) was computed by {63) using the standard
computer subroutine for the exponential function, For x<0. 3 the function

X(x} = x/(e*-1) (64)
was computed from the expansion
©
x/e*-1) =1 -xf2 + 2 (-1)"'B, ., @R (65)
n=st

where the B, [, are the Bernoulli numbers

By = 1/6, By=1/30, By =1/42, etc.; (66)

and then E {x) was computed from

E{x) = X% e*, (67)
The one-dimensional Debye specific heat function is defined by
X
D=2 | x4y ok (68)
e e¥-1 e” -1

28




and the two-dimensional Debye specific heat function is defined by

2
Dz(x)=—xé-zf( ydy _ _2x_ (69)

ey-1 eX-1

3

These functions were computed from series expansions derived in the same
manner as Debye's (¢4) derivation of the series expansions of the original
three-dimensional specific heat function.

Forx> 2 ®
_x¥ 2 z {1+ nx)e ™ x
D (%) = 3% x L —r - =T (70)
b 3 2 2y "X
= lag(3) _ & Z (242n x+n®xdle” . 2x
n=
where
2 (3) = 1.202056903.
Forx < 2
:‘ n-1 (X -) 2n
Dy {xp=1 - Z (-1) (2a-3}Bppy % {72}
n=1 {Z2n+1) !
[
n-1 2n
Dp(x)=1 - z (-1) (2n-1) B, ) % . 3
n=1 (n+1} (2n)!

where the By, _; are the Bernoulli numbers given by (66). Eight terms were
used in cach summation and the break point of x = 2 was chosen so that the two
series expansion for Dy and D; would have about the same accuracy at the break
point, This procedure gives I and D; correctly to 7 or mors dacimal places,
which is rather more than adequate for the present study.
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3.3. Numerical Examples

From 6 to 9 parameters a; and d;, depending on the choice of E (x) or
D; (x) functions for the optical modes, had to be assigned initially to determine
the general form of a frequency distribution, Then the specific form of the
distribution was obtained by choosing the @& 's to minimize the mean square
error. The program followed here was to start with a distribution whose
general form approximated the more exact frequency distribution shown in
Figure 3. Next, various simplifications in the general form were made to see
if acceptable fits to the experimental curve could be obtained with simpler
functions. Quly a limited number of distributions could be examined within
the contract period and the distributions reported here are not necessarily the
best that could be found. Nevertheless, several distributions have been found
that fit the expecrimental curve reasonably well and several points of general
interest for the analytical representation of specific heat curves have arisen
from this study,

Distribution A

The distribution tried initially was similar to that shown in Figure 4,
except that the maximum frequency of the acoustical in-plane transverse mode
was assigned the independent value vy, In order to save space tke ordinates
of the distributions shown in Figure 4 and subsequent figures have not been
drawn to scale, and for convenience the abscissa has been labeled with the
characteristic temperature instead of the frequency, It appeared from the
calculations that the minimum mean square error MSE for this initial distri-
bution would occur for vy or, equivalently, @, greater than 0.9 §) ; that is,
the acoustical and optical branches would overlap. This result was unexpected
in that Figure 3 indicaces that 3 should be about 0.5 @ . At this point, it
was decided to maintain some riscmblance to the distributions of Figure 3 and
a gap was arbitrarily set between the in-plane transverae distributions, The
final result is the two-parameter distribution shown in Figure 4 and denoted

In-Plane Long, In<Plane Transv,
.6 .8 1. ) .8 .9 1. @y
1220, 1630, 2035°K 1630, 1830, 2035°K
Out-of-Plane N-4452
Figure 4. Frequency Distribution A.

MSE = 0,447 for the
Optimum Temperatures
Indicatad

4 .6 1. Ot
760, 1140, 1895°K
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by Distribution A, On carrying out the curve-fitting procedure with the tem-
peratures and weights given in Table 7, the minimum mean square error was
found to be MSE = 0.447 at &, = 2035°K and @, = 1895°K. From the defini-
tions (61) and (62) of MSE and w; it follows that for a mean square error of
unity the computed curve is within the limits AC of the experimental curve on
the average. However, because the computed and experimental curves cross
each other several times, the difference between these curves may be several
times AC in some regions, even when MSE =1,

In order to see how sensitively the optimum characteristic temperatures
depended on the choice of temperatures and weights used to fit the curve,
Distribution A was refitted using 14 temperatures and larger weights which
decreased from 15,625 at 100°K to 100 at 1200°K, The minimum mean square
error with these larger weights was MSE = 0,805 at @, = 2045°K and @ ; =
1890°K. These values of &); and @), are in very good agreement with those
found from the smaller set of 7 temperatures; so the smaller set, given in
Table 7, was used for fitting all other distributions.

The lattice specific heat was computed from (56) using the optimum values
@1 = 2035°K and @ = 1895°K for a much larger set of temperatures. Table
8 gives the values of the functions Fj (x:) and CI(T) and of the difference Diff
as defined by (60)., The table was typed’ directly from the output tape of the
computer; the number following the letter "E" is the power of ten by which the
preceding decimal is to be multiplied, for example,

.48378E-05 = ,48378 x 1075,

From the column of Diff values it is seen that the computed and experimental
curves cross each othe: five times. Below 200°K the magnitude of the differ-
ence between the curves is less than 0,03 cal/mole *K{ but the relative error

is up to 20 per cent and even larger below 10°K, as expected, Above 200°K
the relative error is about 2 per cen* or less and the computed curve is within
the cxpcrim%r’l‘tal range C,%*P &+ AC except arcund 405°K where it {s within
the range C, Py 24cC. Although the computed lattice specific heat for
Distribution A is not the best that could be found, it should be a satisfactory
approximation for most applications requiring an analytic specific heat function
for the entire temperature range.

Distributions B,C, and D

The first step in simplifying Distribution A was to assume that the in-
plane transverse modes have the same frequency distributions as the in-plane
longitudinal modes. This approximation icads to Distribution B shown in
Figure 5. The minimum MSE is 0,945 for ; = 2175°K and @, = 2035°K.
The fit to the experimental curve is better at high temperatures but worse
near and below room temperature, where the larger weighting factors cause a
greater mean square crror than for the curve for Distribution A,

Distributions C and D, shown in Figures 6 and 7, were tried to sec the

effect of shifting the position of the gap between the acoustical and optical out-
of -plane modes. The minimum mean square errors are 1.56 and 1,97,
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In-Plane Long.

In-Plane Transv. Out-of-Plane

6 .8 1.0 .4 .6 1. .
1305, 1740, 2175°K 815, 1220, 2035°K

Figure 5. Frequency Distribution B. MSE = 0,945
for the Optimum Temperatures Indicated

In-Planc Long.

In-Plane Transv. Out-of-Plane
.6 .8 1., .6 .81. @,
1430, 1910, 2385°K 800, 1070, 1335°K

Figure 6. Frequency Distribution C. AMIE =1.50
for the Optimum Temperatures Indicated

In-Plane Long.

In-Planec Transv, Out-of - Piane
6 .8 1. O i) .5 1. .
1225, 1630, 2040°K 865, 1445, 2890°K
N-4451

Figure 7. Frequency Distribution D, MSE =1,97
for the Optimum Temperatures Indicated
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respectively, and the fit to the experimental curve is appreciably worse below
500°K than for Distribution A. Below room temperature, about 85 per cent of
the specific heat is due to the acoustical modes. Since the curve-fitting pro-
cedure has emphasized this temperature range, it is rot surprising to find that
the average characteristic temperature of the in-plane acoustical modes is
about 1300 £+ 100°K and that of the cut-of-plane acoustical mode is about 800 x
100°K for all four distributions, A through D. On the other hand, the upper
characteristic temperatures of the optical modes vary by several hundred
degrees and cannot be accurately determined from the present experimental
data.

Distribution E

In several theoretical calculations the four in-plane modes have been rep-
resented by a single Debye function., Distribution E, shown in Figure 8, has
been investigated to see the effect of the approximation of neglecting the optical
modes or, more accurately, of assuming that the optical and acoustical modes
have the same frequency distribution. Surprisingly, this distribution gave the
best fit of 2all. The minimum mean square error is only MSE = 0,289 for @, =
2165°K and @), = 1735°K. The good fit must be considered as fortuitous,
since there is no theoretical justification for treating the optical modes in this
manner.

It has been claimed in fitting a distribution such as Distribution E to the
experimental data that the low temperature specific heat is due almost entirely
to the acoustical out-of-plane mode and that its characteristic temperature
{695°K in this case) car be determined from the low temperature data by neg-
iecting the in-plane modes entirely., This is not the case. In spite of the high
characteristic temperature of 216%°K of the four in-plane modes of Distribution
E, these modes contributc about one third of the specific heat at all tempera-
tures below 100°K.

Distribution F

The simplest frequency distribution investigated here is based on the
approximation of assuming that all optical and acoustical modes have the same
form. This approximation results in Distribution F, shown in Figure 9, The
minimum mean square error is MSE = 2.14 at @, = 2450°K and &, = 1070°K.
Table 9, which is similar to Table 8, gives the computed lattice specific heat,
Diff, Fy (x3) and Fy(x,) for several temperaturcs for Distribution F. The fit
to the experimental curve at high temperatures is as good as for any distribu-
tion investigated but the fit below 150°K is worse. As is to be expected the fit
below 150°K using the two two-dimensional Debye functions of Distribution F
is much better than the fit obtained by Magnus using two thrfe-dlmcnaional
Debye functions. For example, at 40°K Magnus® formula (v gives Cy = 0,024,
compared to 0.055 for Distribution F, The experimental value is 0,079 &+ ,002
cal/mole °K.

An upper chnracteristic temperature for the in-plane modes of around
2500°K har often been quoted in the literature. Although a value in this range
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In-Plane Long.

In-Plane Transv. Out-of-Plane
Acoustical and
Optical
1. @, .4 .6 . @,
2165°K 695, 1040, 1735°K

Figure 8. Frequency Distribution E, MSE = 0, 289
for the Optimum Temperatures Indicated

Out-of - Plane
Acoustical and
Optical

In-Plane Long.

In-Plane Transv.
Acoustical and
Optical

.o .,

2450°K 1070°K

Figure 9. Frequency Distribution F. MSE = 2,14
for the Optimum Temperatures Indicated

In-Plane Long.
lh/-mm}' Out-of-Plane
l j

1.0 V. O 4 .6 1. 4D,
1520, 1850°K 695, 1045, 1740°K

Figure 10, Frequency Distsibution G. MSE = 0,292
for the Optimum Temperatures Indicated
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was obtained for Distribution F, all the other distributioas give valies closer
to 2000°K, It seems likely that very little significance should be giver to the
upper characteristic temperature until the shape of the optical moae. t as been
determined more accurately.

Distribution G

The narrowness of the distributions of the in-plane optical modes of
Distributions A and B suggests that these distributions could be approximated
by Einstein distributions at a single frequency. This point is illustrated by
Distribution G, shown in Figure 10, which hae three independent characteristic
temperatures, Probably because the minimization was carried out with respect
to three §'s, a good fit was obtained for Distribution G, the minimum mean
square error being MSE = 0,292 for the optimum temperatures shown in
Figure 10. The computed and experimental curves cross seven times and the
{fit is particularly good in the room temperature region,

One point may be noted which applies to all distributions. Since the mean
square error is a function of H; and H ,, it can be plotted as a surface above
the @; @ .-planc. This surface has a single valley with rather stecep sides,
The bottom of the valley has a very gentle slope and usually has one relative
minimum and one absolute minimum. If H,; and ; are changed from their
optimum values in such a way a3 to stay along the bottom of the valley, then
rather large changes can be made in @, and @, with only a small increase
in the mean square error, Thesec points are illustrated for Distribution C by
the values of MSE given in Table 10, For example, the cffect of a 35°K change
in @; (2385 to 2350) can be canceled by a change of 25°K in ¥, (1335 to 1360),
thereby produciag a fit which is essentially as good as the optimum. The gentle
slope of the bottom of the valley seems to explain the equal success of elaborate
calculations based on very different models of at:n..c forces but which have a
parameter that is arbitrarily varied until the MSE is in the bottom of the valley.
A good fit does not necessarily confirm the correctness of the rest of the
calculation.

Table 10, Mean Square Errors for
Frequency Distribution C

®, ®@:. Type of

‘K i 4 MSE Point
2500 1250 1.92 Botiom
2350 1360 1.58 Bottom
2350 1335 1.87 Side
2385 1335 1.56 Abs. Min.
2385 1360 1.81 Side

~ 1950 ~ 1850 3.13 Saddle
~1625 ~2900 ~2.0 Rel. Min,
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4., SUMMARY AND CONCLUSIONS

Several conclusions can be drawn from the results of the literature sur-
vey of the experimental measurements of the specific heat of graphite, Also,
the survey indicates the need for additional experimental data in several areas.

For engineering purposes, it appears that the specific heat of all coke-
base graphites iz the same at all temperatures and that the average specific
heat curve is adequately known below about 2000°K. Above 2000°K all the reli-
able data were taken on the same experimental equipment; and some additional
measurements are desirable in this range, particularly of the rapid increase
in the specific heat above 3000°K.

For scientific purposes, the data are less satisfactory. The specific heat
of lampblack-based graphite, which has been measured only below 20°K,
should be measured at higher temperatures. This data would provide a more
complete check on theories which account for the increase in the specific heat
of this type of graphite in terms of changes in the elastic stiffness constants
c33 and cqy. There does not appear to be any very accuraie (£ 1 per cent)
measurements of the specific heat of any type of graphite in the range of a few
hundrcd degrees above room temperature. The apparent difference between
the specific heats of natural and coke-based graphite below room temperature
should be investigated above room temperature.

There is a need for more 2ccurate data on the difference between the
specific heat at constant pressure and at constant volume. At present there
are no measurements of the temperature dependence of the bulk modulus of
graphite crystals. aAccurate values over a temperature interval of even a few
hundred degrees would be valuahic for checking the estimate of the tempera-
ture dependence made in this study. There does not appear to be accurate
data on the crystallite coefiicient of thermal expansion along the c-axis of
coke-based and lampblack-based graphites in the region of a few hundred
degrees below and above room temperature, although some data exist at higher
temperatures. Until the C,-C,, term is accurately known, the theorectically
interesting question of an anelastic component in the lattice specific heat can~
not be answered.

It was found that combinations of Einstein and one- and two-dimensional
Debye functions could be found which both adequately approximated the lattice
specific heat curve and roughly approximated the frequency distributions for
the acoustical and optical modes, Howeaver, it was found that an equally good
{1t to the experimental curve could be obtained by a distribution which did aot
properly treat the optical in-plane modes, This result appears to be fortuitous
and the additional neglect of the optical out-of-plune mode gave a poor fit,
The use of two-dimensional Debye functions for the acoustical modes scems
to be definitely better than the use of three-dimensional functions at tempera-
tures below 150°K, but the large experimental uncortainty at temperatures
above 500°K makes it difficult to choose between two- and three-dimensional
functions in this region. Rather different sets of characteristic temperaturea
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B

(8, B, or (B:. B2 @;) could be found that gave essentially equal fits

to the experimental curve. Because of this and because very different models
of the frequency distributions gave nearly the same result, it is not posgsible

to determine unique characteristic temperatures. However, it appears that
the highest frequency for which there is a significant number of in-plane
optical modes corresponds to a temperature closer to 2000°K than to the often
used 2500°K. The characteristic temperature of the acoustical out-of-plane
mode represented by a two-dimensional Debye function is in the range 755 ¢
60°K for the models which gave good approximations to the experimental curve.
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